ABSTRACT FRACTIONAL CALCULUS FOR m-ACCRETIVE OPERATORS
نویسندگان
چکیده
In this paper we aim to construct an abstract model of a differential operator with fractional integro-differential composition in final terms, where modeling is understood as interpretation concrete operators terms the infinitesimal generator corresponding semigroup. We study such Kipriyanov operator, Riesz potential, difference operator. Along this, consider transforms m-accretive generalization, introduce class $\mathfrak{G_{\alpha}}$ and provide description its spectral properties.
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملStrong convergence theorem for finite family of m-accretive operators in Banach spaces
The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کاملNumerical Approximation of Fractional Powers of Regularly Accretive Operators
We study the numerical approximation of fractional powers of accretive operators in this paper. Namely, if A is the accretive operator associated with an accretive sesquilinear form A(·, ·) defined on a Hilbert space V contained in L(Ω), we approximate A for β ∈ (0, 1). The fractional powers are defined in terms of the so-called Balakrishnan integral formula. Given a finite element approximatio...
متن کاملq-ANALOGUES OF SAIGO’S FRACTIONAL CALCULUS OPERATORS
M. Saigo [Math. Rep. Coll. Gen. Educ., Kyushu Univ., 11 (1978) 135-143] has defined a pair of fractional integral operators and fractional derivatives involving generalizd hypergeometric function. The aim of present paper is to define their q-analogues. First, we define a pair of q-analogues of Saigo’s fractional integral operators and establish some results for it. Next, we define a pair of q-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Mathematics
سال: 2021
ISSN: ['1311-1728', '1314-8060']
DOI: https://doi.org/10.12732/ijam.v34i1.1